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LE'lTER TO THE EDITOR 

Nonlinear growth of wetting layers 

R Lipowsky? 
Baker Laboratory, Comell University, Ithaca, NY 14853, USA 

Received 16 April 1985 

Abstract. The growth of wetting layers is studied as a function of time f in the framework 
of effective interface models. The thickness of such layers is found to grow as t"4 and 
1''' for three-dimensional systems which are govemed by non-retarded and retarded van 
der Waals forces. In the fluctuation regimes, a universal growth law t+ with $ = $(3 - d )  
is found where d is the bulk dimensionality. It is also shown that the dynamic critical 
exponent z is super-universal: z = 2 holds both in the mean field and in the fluctuation 
regimes. 

Considerable effort has been devoted recently to the study of wetting phenomena (see 
the reviews in Pandit et a1 1982, and Sullivan and Telo da Gama 1985). Most of this 
work has focused on the properties of wetting layers in thermal equilibrium. It is 
also of interest, however, to study how such layers approach equilibrium if they are 
initially far away from it. Consider, for instance, a liquid layer between a gas of 
adatoms and a solid substrate surface. In equilibrium, its thickness is determined by 
the temperature T and by the chemical potential difference Sp OC T ln(p*/p) where p 
is the pressure and p *  is its value at liquid-vapour coexistence. For Sp >> 0, the wetting 
layer is very thin. For Sp = 0, it is very thick. Thus, if one changes Sp from Sp >> 0 
to Sp = 0, the thickness of the layer will steadily grow with time. This growth is studied 
here in the framework of effective interface models. 

The equilibrium properties of wetting layers are most easily obtained from the free 
energy functional (Lipowsky 1984, 1985 and references therein) 

F(1) = dd-'x[$u(Vl)*+ V ( l ) ] / ( K B T )  (1) I 
1 = l(xl ,  . . . , xd-') is the distance between the (d  - 1)-dimensional interfaces which 
bound the wetting layer, U is an appropriate interfacial tension, and the interfacc 
potential V(1)  is the free energy per unit area for a layer of constant thickness. Quite 
generally, V(1) consists of a repulsive and an attractive part. For complete wetting, 
one has 

(2) 
with a positive Hamaker constant W. The first term in (2) is repulsive, i.e., it favours 
a larger value of 1, the second term in (2) is attractive, i.e., it favours a smaller value 
of 1. The exponent p in (2) is given by p = ~ - d - l  where K = 6  and ~ = 7  for 
non-retarded and retarded van der Waals forces (see, e.g., Dzyaloshinskii er a1 1961). 

V( I )  = w-p + Spl 
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The chemical potential difference Sp is the only scaling field which is relevant at 
complete wetting. As Sp + 0, the mean thickness ( I )  = T of the layer diverges as well 
as the correlation length tI1 for interfacial fluctuations 

fa ~p P s < O  (3a)  

(11 cc Sp - "11 VI/ > 0. ( 3 b )  

Two scaling regimes have to be distinguished; a mean field ( M F )  regime for d > d * ( p )  
and a fluctuation ( F L )  regime for d S d * ( p ) .  The upper critical dimension d * ( p ) =  
(2+3p) / (2+p)  depends only on the repulsive part of the interface potential (2) 
(Lipowsky 1984). In the M F  regime, one has 

P s  = - 1 / ( 1  +P) VI1 = (2+P) / (2+2P) .  (4% b )  
In the FL regime with d s d * ( p ) ,  the values for PS and vIl can be obtained from two 
simple and plausible assumptions: ( 1 )  that these critical exponents are universal, i.e., 
do not depend on p ;  and (2) that they are continuous at d = d * ( p ) .  These two 
assumptions together with (4) lead to 

Pr = - (3  - d ) / ( d  + 1) VI1 = 2/(d + 1 )  (5a, b )  

for d S d * (  p ) .  The same values have been obtained from a self-consistent perturbation 
theory (Kroll et a1 1985) and from a linear renormalisation group (Fisher and Huse 
1985). They can also be obtained from the overall entropy loss of the two interfaces 
as given by Fisher and Fisher (1982). 

The dynamical model studied here is defined by the Langevin equation 

al(x, t ) / a t = - A S F { I } / 6 1 + ~ .  ( 6 )  

A is an Onsager coefficient, F{1} is given by ( l ) ,  and 5 is a Gaussian random force 
with ( 5 )  = 0 and (5(x, t)l(x' ,  t ' ) )  = 2AS(x - x')S( t - t ' ) .  Similar Langevin equations have 
been studied previously for the dynamics of the roughening transition (Chui and Weeks 
1978) and as a dynamic version of the drumhead model (Bausch et a1 1981). In the 
latter case, one has to include a generalised Onsager coefficient A = A ( I )  in order to 
preserve the nonlinear symmetry of the drumhead model. Such a complication does 
not arise here since (1) does not possess such a symmetry. For convenience, I will 
put K,T = 1 and U = 1 in the rest of this paper. 

Consider now a situation where the wetting layer has a finite thickness for t < 0. 
At t = 0, the field Sp is changed to Sp = 0. As a consequence, the thickness i( t )  will 
steadily grow towards its equilibrium value [=a. In the MF approximation to (6) 
which should be valid for d > d*(  p ) ,  this growth is determined by 

a i( ? ) / a t  = - h a  v/a/l i = ~p wi-(I+p). (7) 
The solutions of ( 7 )  behave like 

i ( t ) a t *  

with 

rc, = 1/(2+P) ( 8 6 )  
for large t .  Thus, the thickness of the wetting layer grows as and for three- 
dimensional systems governed by non-retarded and retarded van der Waals forces, 
i.e., by p = 2 and p = 3. 
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For short-range forces, on the other hand, the interface potential has the form 

V( I )  = w e-'/* + 8p1 

i( t )  a In( t ) .  

(9) 

(10) 

where 5 is the bulk correlation length. The corresponding MF equation leads to 

Such a logarithmic behaviour has been found previously from the numerical solution 
of a Ginzburg-Landau model for the fluid density (Riecke 1982). 

The long-time behaviour (8) can be re-derived by a scaling argument. Assume that 
f =  f(Sp, t )  is a homogeneous function of its arguments, i.e., 

r(8p, t )  = b - p g / v i l  f(b1'"lI8p, b-'t) 

= sp@sL((y' t)  (11 )  

where b is an arbitrary rescaling factor, and L ( x )  a shape function. The dynamic 
exponent z in ( 1 1 )  is z = 2  in M F  theory. This can be seen, for instar?,., from the 
Fourier transform R ( k ,  w )  of the linear response function. In MF, one has 

R (  k, U )  = R,( k, U )  =[-io + A ( kZ + .$')I-' 
= 5 @ ( 5 , , k  s f 4  (12) 

which implies z = 2. The fact that z = 2 in the MF approximation for wetting has also 
been observed by Forgacs et al (1985) who studied a Ginzburg-Landau model for the 
fluid density. 

The scaling form ( 1 1 )  implies 

f(0, t )  a r-@J(vliz). (13) 

- P s / ( v a z )  = 1/(2+p) = $4 d > d * ( p ) .  (14) 

From (4), ( 8 )  and (13) ,  one finds 

Note that this scaling relation is quite similar to the corresponding relation for the 
nonlinear relaxation of an order parameter near a bulk critical point. In the latter 
case, the order parameter decays as t'b with (clb = - P b / (  v b z b )  < 0 (Fisher and RQcz 
1976) where P b ,  v b  and z b  are bulk critical exponents in the usual notation. 

The identity z = 2 for the dynamic critical exponent z holds also in the FL regime 
for d s d * (  p ) .  This is shown as follows by a self-consistency argument which is similar 
to the one used by b o l l  er a1 (1985) for the time-independent case. First, let us 
consider the generalised interface potential 

V (  I )  = w-p + 8pP ( 1 5 )  
and put 1 = f +  6. This leads to a field theory for 4 = I - f with the potential 

The vertices U, are given by 

U, =d"V(l)/dl"l T 

and behave like 
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as L5p + 0 where the scaling relation T -  5 j3 -d ) /2  has been used. The Fourier transform 
R ( k ,  w )  of the linear response function has the form 

R ( k, U )  = [ -iw + A ( k 2  + U,) - 2( k, U ) ] - '  ( 1 8 )  

with u z a  Sp5\r-2)(3-d)'2 from (17b) .  The self-energy Z ( k ,  w )  can be expressed in terms 
of diagrams according to the usual rules (Bausch et al 1976, De Dominicis and Peliti 
1978). There are two types of internal lines, namely response and correlation lines. 
After the integrations over internal times have been performed, each correlation line 
contributes a factor (k '+  U')-', and each time interval gives a factor [-iw+ 
A X m  ( k t  + u2)]- '  where cr runs over all momenta present in that time interval. 

The correlation length tl1 may now be determined self-consistently. First, it is 
assumed that 

511' - 0 2  

which implies ( 3 b )  with 

= 2 / ( - 2  + 3q  + 2d - q d ) .  (20)  

For q = 1 ,  ( 20 )  reduces to ( 5 6 ) .  Due to (19 ) ,  each diagram for Z ( k ,  w )  with a total 
number N of vertices yields a contribution of the form 

ti2( sp.5;/ " 1 1  1 "A ( x, Y ) 

x = ( S , , k ) 2  y = t$w. ( 2 1 4  b )  

( 2 1 )  

where A depends on L5p only via 

Self-consistency requires that Z(0,O) - ti2 yields again (20)  which is found to be 
fulfilled. Furthermore, ( 2 1 )  implies 

&'A(x, y )  = u t i 2 +  bk2+ ciw +. . . ( 2 2 )  

for small k and w with a = A(0, 0), b = dA(x, O)/dxl,, and c = dA(0, y)/dyl,. Thus, 
Z(k, 0) - k2 for small k which means that 7 = 0. This identity has also been proven 
to be correct by transfer-matrix methods for two-dimensional systems (Lipowsky 1985). 
Similarly, one concludes from ( 2 2 )  that 2(0, U )  - iw for small w which implies that 
the dynamic exponent z = 2 in the FL regime. 

One may now use the scaling form (13) in order to determine the nonlinear growth 
in the FL regime. It then follows from ( 5 )  and z = 2 that 

+ =  - P s / ( y l l Z ) = t ( 3 - d )  d s d * ( p ) .  ( 2 3 )  
In particular, for d = 2 and p 3 2 ,  the wetting layer grows as P' with the universal value + = t. This applies to all lattice models with short-range interactions ( p  = 00) since the 
roughening temperature TR = 0 in d = 2 and one may, therefore, use the continuum 
model studied here. As a consequence, the universal growth law t''4 should be 
accessible to Monte Carlo simulations of models such as the two-dimensional Ising 
model where 6p corresponds to the magnetic field h. 

The above scaling argument can also be applied to the length scale tu. As a result, 
one finds 

5 ll( t c C t l / Z =  t ' I 2 ,  V d. (24)  
Thus, the growth of this length scale is predicted to be completely independent of p ,  
i.e., of the underlying microscopic forces for all d. 
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In an experiment, one cannot make Sp exactly equal to zero. If 8p is small and 
positiue, the equilibrium thickness [(CO) is large but finite. As a consequence, there is 
a characteristic time 

For O<< tc< t * ,  the layer thickness grows as predicted by (8) and (10). For tB t* ,  [ ( t )  
relaxes exponentially to I = [(CO). On the other hand, if 8p is small and negative, one 
has a [ / a t  - A8p from the M F  approximation to ( 6 ) .  Thus, the wetting layer grows 
linearly in this case as long as the metastable or oversaturated bulk phase does not decay. 

So far, the discussion has been confined to complete wetting. Very similar results 
can be obtained for critical and multicritical wetting. At bulk coexistence, the corre- 
sponding interface potentials have the form 

V (  I )  = Al-" + Elpr ,  s > r, ( 2 6 )  

with A > 0 and B < 0. s depends on the type of criticality. For fixed s, different values 
for r correspond to different relevant perturbations. For each pair (s, r )  one has two 
boundary dimensions and thus three different scaling regimes (Kroll et al 1985, Fisher 
and Huse 1985). As for complete wetting, the upper critical dimension d* depends 
only on the repulsive part of ( 2 6 ) :  d * ( s )  = ( 2 + 3 s ) / ( 2 + s ) .  For d S d * ( s ) ,  the correla- 
tion length g,, E \B\-'l as B + 0- with FI1 = 2/  ( - 2  - 3r + 2d + r d ) .  That exponent goes 
to infinity as d + d * * ( r )  = ( 2 + 3 r ) / ( 2 +  r ) .  d** is the second boundary dimension 
which depends only on the attractive part of ( 2 6 ) .  Thus, there is a MF regime for 
d > d * ( s ) ,  a weak fluctuation (WFL) regime for d * ( s ) >  d > d * * ( r ) ,  and a strong 
fluctuation (SFL) regime for d**( r )  > d. The existence of three scaling regimes showed 
up first in an investigation of the interface potential V( I )  = A e-'/( + BI-' (Lipowsky 
1984) which corresponds to s + 00 in ( 2 6 ) .  In the MF and in the WFL regime, the critical 
and multicritical transitions occur at B = 0-. As a consequence, the nonlinear growth 
is solely determined by ;he repulsive I-s term in ( 2 6 ) .  By analogy with (8) and ( 2 3 ) ,  
this immediately implies 

In fact, exact results in d = 2 and continuity arguments indicate that J, = i ( 3  - d )  holds 
also in the SFL regime where the transitions occur at finite B < 0. 

I thank Professor M E Fisher for his support and his hospitality at Cornell, and 
Professors B Widom and C Franck for stimulating discussions. I am grateful to 
Professor M E Fisher for a critical reading of the manuscript. This work is supported 
by a grant from the National Science Foundation. 

Note added in proof: The predictions of this letter should also apply to thin films which grow via the 
Frank-van der Menve mode. Physical systems which exhibit this growth behaviour can be found in Venables 
et a1 (1984). 
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